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Abstract

We study ergodic properties of certain piecewise smooth two-dimensional
systems by constructing countable Markov partitions. Using thermodynamic
formalism we prove exponential decay of correlations for Hölder functions.
That extends previous results of M. Jakobson and S. Newhouse (2000),
where Bernoulli property was proved for such systems. Our approach is
motivated by the original method of D.V. Anosov and Ya.G. Sinai (1967).

1 Motivation: Folklore Theorem in dimension 1
A well-known Folklore Theorem in one-dimensional dynamics can be formulated
as follows.

Folklore Theorem. Let I = [0,1] be the unit interval, and suppose {I1, I2, . . .}
is a countable collection of disjoint open subintervals of I such that

⋃
i Ii has the

full Lebesgue measure in I. Suppose there are constants K0 > 1 and K1 > 0 and
mappings fi : Ii→ I satisfying the following conditions.

1. fi extends to a C2 diffeomorphism from the closure of Ii onto [0,1], and
infz∈Ii | D fi(z) |> K0 for all i.

2. supz∈Ii

| D2 fi(z) |
| D fi(z) |

| Ii |< K1 for all i.
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Then, the mapping F(z) defined by F(z) = fi(z) for z ∈ Ii, has a unique invariant
ergodic probability measure µ equivalent to Lebesgue measure on I.

For the proof of the Folklore theorem , the ergodic properties of µ and the
history of the question see for example [4] and [18].
In [9] , [10] the Folklore Theorem was generalized to two-dimensional maps F
which piecewise coincide with certain hyperbolic diffeomorphisms fi. As in the
one-dimensional situation there is an essential difference between a finite and an
infinite number of fi. In the case of an infinite number of fi, their derivatives grow
with i and relations between first and second derivatives become crucial.
Models with infinitely many fi appear when we study non-hyperbolic systems,
such as quadratic-like maps in dimension 1, and Henon-like maps in dimension 2.

2 Model under consideration. Geometric and hy-
perbolicity conditions

1. As in [9] , [10] we consider the following 2-d model. Let Q be the unit
square. Let ξ = {E1,E2, . . . ,} be a countable collection of closed curvi-
linear rectangles in Q. Assume that each Ei lies inside a domain of def-
inition of a C2 diffeomorphism fi which maps Ei onto its image Si ⊂ Q.
We assume each Ei connects the top and the bottom of Q. Thus each Ei is
bounded from above and from below by two subintervals of the line seg-
ments {(x,y) : y = 1, 0≤ x≤ 1} and {(x,y) : y = 0, 0≤ x≤ 1}. Hyperbol-
icity conditions that we formulate below imply that the left and right bound-
aries of Ei are graphs of smooth functions x(i)(y) with

∣∣∣dx(i)
dy

∣∣∣ ≤ α where α

is a real number satisfying 0 < α < 1.
The images fi(Ei) = Si are narrow strips connecting the left and right sides
of Q and that they are bounded on the left and right by the two subintervals
of the line segments {(x,y) : x= 0, 0≤ y≤ 1} and {(x,y) : x= 1, 0≤ y≤ 1}
and above and below by the graphs of smooth functions Y i(X), | dY (i)

dX | ≤ α .
We are saying that E ′i s are full height in Q while the S′is are full width in Q.

2. For z ∈ Q, let `z be the horizontal line through z. We define δ z(Ei) =
diam(`z

⋂
Ei), δ i,max = maxz∈Q δ z(Ei), δ i,min = minz∈Q δ z(Ei). We assume

the following
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Geometric conditions.

G1. For i 6= j holds int Ei∩ int E j = /0 and int Si∩ int S j = /0 .

G2. mes(Q\∪i int Ei) = 0 where mes stands for Lebesgue measure.

G3. −∑i δ i,max logδ i,min < ∞.

3. In the standard coordinate system for a map F : (x,y)→ (F1(x,y),F2(x,y))
we use DF(x,y) to denote the differential of F at some point (x,y) and Fjx,
Fjy, Fjxx, Fjxy, etc., for partial derivatives of Fj, j = 1,2 .

Let JF(z) =| F1x(z)F2y(z)−F1y(z)F2x(z) | be the absolute value of the Jaco-
bian determinant of F at z.

Hyperbolicity conditions.

There exist constants 0 < α < 1 and K0 > 1 such that for each i the map

F(z) = fi(z) for z ∈ Ei

satisfies

H1. | F2x(z) |+α| F2y(z) |+α2| F1y(z) | ≤ α| F1x(z) |
H2. | F1x(z) |−α| F1y(z) | ≥ K0.

H3. | F1y(z) |+α| F2y(z) |+α2| F2x(z) | ≤ α| F1x(z) |
H4. | F1x(z) |−α| F2x(z) | ≥ JF(z)K0.

For a real number 0 < α < 1, we define the cones

Ku
α = {(v1,v2) : | v2 | ≤ α| v1 |}

Ks
α = {(v1,v2) : | v1 | ≤ α| v2 |}

and the corresponding cone fields Ku
α (z),Ks

α (z) in the tangent spaces at
points z ∈ R2.

The following proposition proved in [10] relates conditions H1-H4 above
with the usual definition of hyperbolicity in terms of cone conditions. It
shows that conditions H1 and H2 imply that the Ku

α cone is mapped into
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itself by DF and expanded by a factor no smaller than K0 while H3 and H4
imply that the Ks

α cone is mapped into itself by DF−1 and expanded by a
factor no smaller than K0.

Unless otherwise stated, we use the max norm on R2, | (v1,v2) |=max(| v1 |, | v2 |).

Proposition 2.1 Under conditions H1-H4 above, we have

DF(Ku
α )⊆ Ku

α (1)

v ∈ Ku
α ⇒ | DFv | ≥ K0| v | (2)

DF−1(Ks
α )⊆ Ks

α (3)

v ∈ Ks
α ⇒ | DF−1v | ≥ K0| v | (4)

Remark 2.2 The first version of hyperbolicity conditions appeared in [17].
It was developed in particular in [5] and [8] . Here we use hyperbolicity
conditions from [10]. In [9] we used hyperolicity conditions from [5] which
implied the invariance of cones and uniform expansion with respect to the
sum norm | v |= | v1 |+ | v2 |.

4. The map

F(z) = fi(z) for z ∈ int Ei

is defined almost everywhere on Q. Let Q̃0 =
⋃

i int Ei, and, define Q̃n,n> 0,
inductively by Q̃n = Q̃0

⋂
F−1Q̃n−1. Let Q̃ =

⋂
n≥0 Q̃n be the set of points

whose forward orbits always stay in
⋃

i int Ei. Then, Q̃ has full Lebesgue
measure in Q, and F maps Q̃ into itself.

The hyperbolicity conditions H1–H4 imply the estimates on the derivatives
of the boundary curves of Ei and Si which we described earlier. They also
imply that any intersection fiEi

⋂
E j is full width in E j. Further, Ei j =
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Ei
⋂

f−1
i E j is a full height subrectangle of Ei and Si j = f j fiEi j is a full

width substrip in Q.

Given a finite string i0 . . . in−1, we define inductively

Ei0...in−1 = Ei0

⋂
f−1
i0 Ei1i2...in−1.

Then, each set Ei0...in−1 is a full height subrectangle of Ei0 .

Analogously, for a string i−m . . . i−1 we define

Si−m...i−1 = fi−1(Si−m...i−2

⋂
Ei−1)

and get that Si−m...i−1 is a full width strip in Q. It is easy to see that Si−m...i−1 =

fi−1 ◦ fi−2 ◦ . . .◦ fi−m(Ei−m...i−1) and that f−1
i0 (Si−m...i−1) is a full-width substrip

of Ei0 .
We also define curvilinear rectangles Ri−m...i−1,i0...in−1 by

Ri−m...i−1,i0...in−1 = Si−m...i−1

⋂
Ei0...in−1

If there are no negative indices then respective rectangle is full height in Q.
For infinite strings, we have the following Proposition.

Proposition 2.3 Any C1 map F satisfying the above geometric conditions
G1–G3 and hyperbolicity conditions H1–H4 has a ”topological attractor”
in the sense of [10]

Λ =
⋃

...i−n...i−1

⋂
k≥1

Si−k...i−1

The infinite intersections
⋂

∞
k=1 Si−k...i−1 define C1 curves y(x), |dy/dx| ≤ α

which are the unstable manifolds for the points of the attractor. The infinite
intersections

⋂
∞
k=1 Ei0...ik−1 define C1 curves x(y), |dx/dy| ≤ α which are

the stable manifolds for the points of the attractor. The infinite intersections

∞⋂
m=1

∞⋂
n=1

Ri−m...i−1,i0...in−1

define points of the attractor.

5



Proposition 2.3 is a well known fact in hyperbolic theory. For example it
follows from Theorem 1 in [5]. See also [12]. The union of the stable
manifolds has full measure in Q. The trajectories of all points in this set
converge to Λ. That is the reason to call Λ a topological attractor.

5. An F−invariant Borel probablility measure µ on Q is called a Sinai−
Ruelle−Bowen measure (or SRB-measure) for F if µ is ergodic and there
is a set A ⊂ Q of positive Lebesgue measure such that for x ∈ A and any
continuous real-valued function φ : Q→ R, we have

lim
n→∞

1
n

n−1

∑
k=0

φ(Fkx) =
∫

φdµ. (5)

Existence of an SRB measure is a much stronger result, than 2.3. It allows
to describe statistical properties of trajectories in a set of positive phase
volume. It requires some additional assumptions.

3 Distortion conditions
As we have a countable number of domains the derivatives of fi grow. We for-
mulate certain assumptions on the second derivatives. We use the distance func-
tion d((x,y),(x1,y1)) = max(| x− x1 |, | y− y1 |) associated with the norm | v | =
max(| v1 |, | v2 |) on vectors v = (v1,v2).

As above, for a point z ∈ Q, let lz denote the horizontal line through z, and
if E ⊆ Q, let δ z(E) denote the diameter of the horizontal section lz

⋂
E. We call

δ z(E) the z−width of E.
In given coordinate systems we write fi(x,y) = ( fi1(x,y), fi2(x,y)). We use

fi jx, fi jy, fi jxx, fi jxy, etc. for partial derivatives of fi j, j = 1,2.
We define

| D2 fi(z) |= max
j=1,2,(k,l)=(x,x),(x,y),(y,y)

| fi jkl(z) |.

Next we formulate distortion conditions which are used to control the fluctua-
tion of the derivatives of iterates of F along unstable manifolds, and to construct
Sinai local measures.

Suppose there is a constant C0 > 0 such that the following distortion condition
holds
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D1. supz∈Ei,i≥1
| D2 fi(z) |
| fi1x(z) |

δ z(Ei)<C0.

Our conditions imply the following theorem proved in [9], [10].

Theorem 3.1 Let F be a piecewise smooth mapping as above satisfying the geo-
metric conditions G1–G3, the hyperbolicity conditions H1–H4 and the distortion
condition D1.

Then, F has an SRB measure µ supported on Λ whose basin has full Lebesgue
measure in Q. Dynamical system (F,µ) satisfies the following properties.

1. (F,µ) is measure-theoretically isomorphic to a Bernoulli shift.

2. F has finite entropy with respect to the measure µ , and the entropy formula
holds

hµ(F) =
∫

log |DuF |dµ (6)

where DuF(z) is the norm of the derivative of F in the unstable direction at
z.

3.
hµ(F) = lim

n→∞

1
n

log | DFn(z) | (7)

where the latter limit exists for Lebesgue almost all z and is independent of
such z.

4 Additional hyperbolicity and distortion conditions
and statement of the main theorem

When applying thermodynamic formalism to hyperbolic attractors one considers
the function φ(z) = − log(DuF(z)). Thermodynamic formalism is based on the
fact that the pullback of φ(z) into a symbolic space determined by some Markov
partition is a locally Hölder function.
We prove Hölder property of φ(z) assuming an extra hyperbolicity condition, and
a distortion condition D2 stronger than D1.

Hyperbolicity condition H5.
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H5. 1
K2

0
+α2 < 1.

Distortion condition D2.

D2. supz∈Ei,i≥1
| D2 fi(z) |
| fi1x(z) |

<C0.

Remark 4.1 Condition D2 is too strong to be useful for systems with critical
points. In dimension 1 it reads as | Fixx

Fix
| < c instead of | Fixx

F2
ix
| < c. However

instead of D2 one can assume additional hyperbolicity conditions, which can be
vaguely formulated as ”contraction of fi grows faster than expansion” . That
approach will be discussed in a forthcoming paper.

Assuming additionally H5 and D2 we prove that Hölder functions have exponen-
tial decay of correlations.
Let Hγ be the space of functions on Q satisfying Hölder property with exponent
γ

| φ(x)−φ(y) | ≤ c| x− y |γ

Then the following theorem holds.

Theorem 4.2 Let F be a piecewise smooth mapping as above satisfying the geo-
metric conditions G1–G3, the hyperbolicity conditions H1–H5 and the distortion
condition D2. Then (F,µ) has exponential decay of correlations for φ ,ψ ∈Hγ .
Namely there exist η(γ)< 1 and C =C(φ ,ψ) such that

|
∫

φ(ψ ◦Fn)dµ−
∫

φdµ
∫

ψdµ |<Cη
n (8)

5 Hölder properties of log(DuF(z))

1. Although Markov partitions are partitions of the attractor, we need to check
Hölder property on actual two-dimensional curvilinear rectangles Ri−m...i−1,i0...in−1 .
We call respective partition Markov as well. In our model Markov partition
consists of initial full height rectangles Ei.
We consider rectangles Ri−m...i−1,i0...in−1 with m≥ 0,n≥ 1. We use notation
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m = 0 if there are no negative coordinates, which means Ri−m...i−1,i0...in−1 =
Ri0,...,in−1 is a full height rectangle.
For any function a(x,y) the variation of a(x,y) over a rectangle R is defined
as

var(a(x,y))|R = sup
(x1,y1)∈R,(x2,y2)∈R

| a(x1,y1)−a(x2,y2) | (9)

By definition the function logDuF is locally Hölder if for m≥ 0, n≥ 1 the
variation of logDuF on Ri−m...i−1,i0...in−1 satisfies

var(logDuF)|Ri−m...i−1,i0...in−1 <Cθ
min(m,n)
0 (10)

for some C > 0, θ0 < 1.
The assumption n ≥ 1, means that variations are measured between points
which belong to the same full height rectangle.

Proposition 5.1 logDuF is a locally Hölder function.

We prove Proposition 5.1 with some θ0 and C determined by hyperbolicity
and distortion conditions.

(a) The sets Ri−m...i−1,i0...in−1 are bounded from above and below by some
arcs of two unstable curves Γu

i−m...i−1
, which are images of some pieces

of the top and bottom of Q̃, and from left and right by some arcs of
two stable curves Γs

i0...in−1
, which are preimages of some pieces the left

and right boundaries of Q̃ .
Let Z1,Z2 ∈ Ri−m...i−1,i0...in−1 be two points on the attractor. We connect
Z1,Z2 by two pieces of their unstable manifolds to two points Z3,Z4
which belong to the same stable manifold. Let
γ1 = γ(Z1,Z3) ⊂W u(Z1), γ2 = γ(Z2,Z4) ⊂W u(Z2), γ3 = γ(Z3,Z4) ⊂
W s(Z3) be respective curves all located inside Ri−m...i−1,i0...in−1 .
We estimate

| logDuF(Z1)− logDuF(Z2) | ≤ | logDuF(Z1)− logDuF(Z3) |+
| logDuF(Z3)− logDuF(Z4) |+ | logDuF(Z4)− logDuF(Z2) |

(b) First we estimate | logDuF(Z1)− logDuF(Z3) |. We cover γ1 by a
chain of small rectangles with sides parallel to the standard axes R =
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∆x×∆y⊂ Ri−m...i−1,i0...in−1 . Because of cone conditions we can choose
rectangles R = ∆x×∆y satisfying | ∆y | ≤ α| ∆x |. Then
| logDuF(Z1)− logDuF(Z3) | is majorated by the sum of similar dif-
ferences for points z1,z2 ∈W u(Z1)∩R. Here z1,z2 are points on the
vertical boundaries of R. Inside R we can use the mean value theorem.

Hyperbolicity conditions imply the following properties, see [10].

i. Any unit vector in Ku
α at a point z ∈ Ei, in particular a tangent

vector to W u(z), has coordinates (1,az) with | az |< α .
ii.

| DuF(z) |= | F1x(z)+azF1y(z) | (11)

iii.
| F1y |
| F1x |

< α (12)

iv.
| F2x |
| F1x |

< α (13)

v.
| F2y |
| F1x |

<
1

K2
0
+α

2 (14)

Assuming without loss of generality F1x > 0 for all x ∈ Ei we get that
variation of log | DuF | between two points z1,z2 ∈W u(Z1)⊂ R equals

log
[
F1x(z1)

(
1+az1

F1y

F1x
(z1)
)]
− log

[
F1x(z2)

(
1+az2

F1y

F1x
(z2)
)]

(15)

We split it into two expressions and estimate separately

logF1x(z1)− logF1x(z2) (16)

and
log
(
1+az1

F1y

F1x
(z1)
)
− log

(
1+az2

F1y

F1x
(z2)
)

(17)

We rewrite 17 as

log
(
1+

az1
F1y
F1x

(z1)−az2
F1y
F1x

(z2)

1+az2
F1y
F1x

(z2)

)
(18)
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As denominator of the fraction in 18 is uniformly bounded away from
0, we estimate the numerator and rewrite it as a sum of two expressions

| az1 |
| F1y(z1)F1x(z2)−F1y(z2)F1x(z1) |

F1x(z1)F1x(z2)
(19)

and
| az1−az2 ||

F1y(z2)
F1x(z2)

| (20)

As C2 sizes of unstable manifolds are uniformly bounded ( see [10]),
20 is bounded by c| ∆x |. We rewrite 19 as

az1

[F1y(z1)
(
F1x(z2)−F1x(z1)

)
F1x(z1)F1x(z2)

+
F1y(z1)−F1y(z2)

F1x(z2)

]
(21)

As | F1y(z1)
F1x(z1)

|< α , both expressions are estimated similarly.
As we are moving along W u, we get | ∆y |< α| ∆x |.
We use the mean value theorem and distortion assumptions, and get
estimates bounded by

c| ∆x | F1x(θ)

F1x(z2)
(22)

Then it remains to estimate F1x(θ)
F1x(z2)

or equivalently | logF1x(θ)− logF1x(z2) |,
which is the same estimate as 16.
In order to estimate 16 we use again the mean value theorem and dis-
tortion assumptions.
Then we get

| logF1x(θ)− logF1x(z2) |< c| ∆x | (23)

and respectively
F1x(θ)

F1x(z2)
< exp(c| ∆x |) (24)

We combine the previous estimates and get

| logDuF(z1)− logDuF(z3) |< c| γ(z1,z3) | (25)

From hyperbolicity conditions we get

| γ(z1,z3) |<C2
1

Kn
0

(26)
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That implies

| logDuF(z1)− logDuF(z3) |<C3
1

Kn
0

(27)

where C3 is a uniform constant.
Similar inequality holds for γ(z2,z4).

| logDuF(z2)− logDuF(z4) |<C3
1

Kn
0

(28)

(c) Next we estimate the variation of log | DuF(z) | between points Z3 and
Z4, which belong to the same stable manifold W s(Z3) = W s(Z4) ⊂
Ri−m...i−1,i0...in−1 . Thus we need to estimate

log | F1x(Z3)+aZ3F1y(Z3) |− log | F1x(Z4)+aZ4F1y(Z4) | (29)

As above we split the variation 29 into 16, 19 and 20.
This time instead of moving along W u(Z1) we are moving along W s(Z3),
which connects Z3 and Z4. In that case we use | ∆x | < α| ∆y |, so ∆y
variations are added. As above estimates 16, 19 contribute less than

c| γ3 |<C2
1

Km
0

(30)

Next we estimate the dependence of az from y ∈W s
0 .

The following lemma is sufficient for our purposes.

Lemma 5.2 There exist c0 > 0, 0 < θ0 < 1 such that

| aZ3−aZ4 |< c0θ
m
0 (31)

Proof.

We assume by induction that for any rectangle Ri−m...i−1,i0...in−1 , and
for any points Z3,Z4 ∈ Ri−m...i−1,i0...in−1 of intersection of two unstable
manifolds W u

1 , W u
2 with the same stable manifold W s

0 , the inequality
31 holds. Then we prove

| aF(Z3)−aF(Z4) |< c0θ
m+1
0 (32)
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DF maps a unit vector ~v = (1,a) into (F1x +F1ya,F2x +F2ya). Then
the normalized vector DF~v has second coordinate

a′ =
F2x
F1x

+
F2y
F1x

a

1+ F1y
F1x

a
(33)

We denote Z3 = z, Z4 = w and estimate

F2x
F1x

(z)+ F2y
F1x

(z)a(z)

1+ F1y
F1x

(z)a(z)
−

F2x
F1x

(w)+ F2y
F1x

(w)a(w)

1+ F1y
F1x

(w)a(w)
(34)

After cross multiplying we get denominator bounded away from 0.
Therefore it is enough to estimate two terms

F2x

F1x
(w)
(
1+

F1y

F1x
(z)a(z)

)
− F2x

F1x
(z)
(
1+

F1y

F1x
(w)a(w)

)
(35)

and

F2y

F1x
(w)a(w)

(
1+

F1y

F1x
(z)a(z)

)
−

F2y

F1x
(z)a(z)

(
1+

F1y

F1x
(w)a(w)

)
(36)

Both expressions are estimated similarly. To estimate 36 we split it
into

F2y

F1x
(w)a(w)−

F2y

F1x
(z)a(z) (37)

and
a(z)a(w)

(F2y

F1x
(w)

F1y

F1x
(z)−

F2y

F1x
(z)

F1y

F1x
(w)
)

(38)

As above we use elementary algebra and get expressions of the type

F1x(w)−F1x(z)
F1x(z)

(39)

and
F2y(w)−F2y(z)

F1x(z)
(40)

We split γ3 into small intervals, and apply the mean value theorem.
The ratios F1x(θ)

F1x(z)
or equivalently the differences logF1x(θ)− logF1x(z)
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for close points θ ,z on the same stable manifold are estimated (using
again the mean value theorem and D2) as

logF1x(θ)− logF1x(z)<C0(1+α)∆y (41)

Thus for any two points z and θ on the same stable manifold

logF1x(θ)− logF1x(z)<C| z−θ | (42)

In particular for all points z and θ on the same stable manifold the
ratios F1x(θ)

F1x(z)
are uniformly bounded.

Thus estimate 38 contributes

C| γ3 | (43)

When estimating 37 we get similar terms estimated as 43, and

F2y

F1x
(z)
(
a(z)−a(w)

)
(44)

After we combine all terms except 44 we get an estimate

M0C0
1

Km
0

(45)

where M0 is a uniform constant, which depends on the number of sim-
ilar terms that we added above, and C0 is the distortion constant from
condition D2. For 44 we use inductive assumption 31 and get a total
estimate

| aF(Z3)−aF(Z4) |< M0C0
1

Km
0
+
( 1

K2
0
+α

2)c0θ
m
0 (46)

As K0 > 1 we can choose θ0 < 1 satisfying

θ0 >
1

K0
(47)

Also H5 implies that we can choose θ0 < 1 satisfying simulteneously

1
K2

0
+α

2 < θ0 (48)
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Then if
c0 >

M0C0

θ0− ( 1
K2

0
+α2)

(49)

we get the left side of 46 less than c0θ
m+1
0 .

Q.E.D.

Remark 5.3 A related result for classical systems was proved by A.
Pinto and D. Rand in [11]. They prove that if Λ is an invariant hyper-
bolic set with local product structure for a C1+γ diffeomorphism with
one-dimensional unstable leaves, then holonomies between unstable
leaves are C1+α for some α > 0.

From Lemma 5.2 and 30 we get

| logDuF(z3)− logDuF(z4) |<C3θ
m
0 (50)

Combining 27, 28, 50 we conclude the proof of Proposition 5.1.

2. We combine several corollaries from Proposition 5.1 and from the argu-
ments used in its proof.

Corollary 5.4 There exists c independent of i such that for any z1,z2 ∈ Ei
holds

| fi1x(z1) |
| fi1x(z2) |

< c (51)

Here z1,z2 do not need to be on the attractor.
To prove Corollary 5.4 we fix an arbitrary stable manifold W s

i ⊂ Ei, and
connect z1 to z3 ∈W s

i by a horizontal segment σ . As full height rectangles
are bounded from above and below by horizontal segments, σ lies entirely
in Ei. Similarly we connect z2 to z4 ∈W s

i . Then 23 and 42 imply 51.
Let δz(Ei) be the width of the horizontal crossection of Ei through z∈Ei∩Λ.
As δz(Ei) are mapped onto full width unstable curves we get from 51

Corollary 5.5 There exists c independent of i such that for any z1,z2 ∈ Ei
holds

δz1(Ei)

δz2(Ei)
< c (52)
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Remark 5.6 Property 52 demonstrates restrictions on geometry imposed
by condition D2.
Conditions of Theorem 3.1 allow widths of Ei to oscillate exponentially be-
tween ai and bi for some 0 < a < b < 1. However from 52 we get that ratios
are uniformly bounded.

Applying 10 to the full height rectangles Ei we get for all z1,z2 ∈ Ei∩Λ

Corollary 5.7
var(logDuF)|Ei <C (53)

and

Corollary 5.8
Du fi(z1)

Du fi(z2)
< c (54)

For any z on an unstable curve W u(z) ⊂ Ei which is full width in Ei let
|W u(z,Ei) | be the respective length . As |W u(z,Ei) | coincide up to a uni-
formly bounded factor with 1

Du fi(z)
we get from 54

Corollary 5.9 There exists c independent of i such that for any z1,z2 ∈ Ei∩
Λ holds

|W u(z1,Ei) |
|W u(z2,Ei) |

< c (55)

Note that 55 also follows from 52 because at a given point z ∈ Ei ratios :
δz(Ei)

|W u(z1,Ei) |
are uniformly bounded.

Although the next statement is not used in the proof of the main theorem ,
it is usefull for understanding the geometry of partitions into Ei0...in−1 . We
claim that 55 is valid for rectangles of any order.

Remark 5.10 Let Ei0...in−1 be a full height rectangle of order n.
Then for any two points z1, z2 ∈ Ei0...in−1 ∩Λ holds

|W u(z1,Ei0...in−1) |
|W u(z2,Ei0...in−1) |

< c (56)
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To prove 56 we rewrite the ratio DuFn(z2)
DuFn(z1)

as

∏
n−1
i=0 DuF(F iz2)

∏
n−1
i=0 DuF(F iz1)

(57)

and consider
n−1

∑
i=0
| logDuF(F iz2)− logDuF(F iz1) | (58)

As in the proof of Proposition 5.1 we split the estimate of each term into
estimates along stable and unstable manifolds in the images F p(Ei0...in−1) =
Ri0...ip−1,ip...in−1 . For each term estimates from the proof of Proposition 5.1
imply respective bounds : Cθ

p
0 on stable manifolds, and C 1

Kn−p
0

on unstable

manifolds. Thus we get a uniform bound in 58, which implies 56 .

3. According to 2.3 points of Λ are identified with two-sided sequences

(. . . i−m . . . i−1, i0i1 . . . in . . .)

In order to use Ruelle-Bowen approach we define a function φ u corre-
sponding to − logDuF(z) on the space of one-sided sequences. We fix
some unstable manifold W u

0 . Let z = (x,y) ∈ Λ, z0 = W s(z)∩W u
0 . For

φ(z) =− logDu(z) define

u(z) =
∞

∑
k=0

φ(Fk(z))−φ(Fk(z0)) (59)

and
ψ(z) = φ(z)−u(z)+u(Fz) (60)

From 10 we get that the series 59 converge uniformly.
For ψ(z) all terms with z cancel, so ψ(z) as a function of z0 depends only
on nonnegative iterates of z.

Let Ω+ = {x = (i0i1 . . . in . . .)} be the space of one-sided sequences corre-
sponding to stable manifolds.
The above function ψ(z) defined on Ω+ will be denoted φ u(x). On the space
Ω+ we use the metric d(x1,x2) = 2−n, where n = min{k : i1k 6= i2k}.
For a function φ(x) on the symbolic space Ω+ let

Vn(φ) = sup |φ(x)−φ(y)| : xi = yi, i = 0, . . . ,n−1

17



φ(x) is called locally Hölder if there are C > 0,0 < θ < 1 such that ∀n≥ 1

Vn(φ)<Cθ
n (61)

We use the same arguments as in [7] which prove that the Hölder prop-
erty on the space of two-sided sequences implies the Hölder property for
respective function on the space of one-sided sequences. Then Proposition
5.1 implies

Corollary 5.11 φ u(x) is a locally Hölder function on the symbolic space
Ω+.

6 Some sufficient conditions for exponential decay
of correlations in countable shifts

1. We refer to [14] for the following general results about shifts with countable
alphabets .
Let T be the shift transformation on the space X of admissible one-sided
sequences determined by an infinite matrix A with ai j = 0,1. Here i, j are
states of an infinite alphabet. Let C = [i0, . . . , in−1] be cylinder sets. The
system (X ,A,T ) is called topologically mixing if the following holds.

∀C1,C2 ∃N(C1,C2) : ∀n > N(C1,C2) C1∩T−nC2 6= /0 (62)

Let (XA,T ) be a topologically mixing countable shift, and let φ(x) be a
locally Hölder function.
Set φn(x) = ∑

n−1
k=0 φ ◦T k(x). Define Zn(φ ,a) by

Zn(φ ,a) = ∑
T nx=x,x0=a

eφn(x) (63)

Then the limit called Gurevich Pressure

P(φ) = lim
n→∞

1
n

logZn(φ ,a) (64)

exists and does not depend of the choice of a, see [14].
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Definition Assuming (XA,σ) is topologically mixing and φ is locally Hölder
continuous φ is called positive recurrent if there is λ > 0 such that for any
given symbol a there is a constant Ma > 1 and an integer Na such that for
every n≥ Na holds

Zn(φ ,a)
λ n ∈ [M−1

a ,Ma]

Let Lφ be the Ruelle operator

Lφ f (x) = ∑
Ty=x

eφ(y) f (y) (65)

The following is a part of Theorem 4 in [14].

Theorem 6.1 Let (XA,T ) be a topologically mixing countable shift, and
let φ(x) be a locally Hölder function such that P(φ) < ∞. If φ is positive
recurrent, then λ = eP(φ) and there exist a σ -finite measure ν and a function
h > 0 such that L∗

φ
ν = λν , Lφ h = λh, ν(h) = 1, and for every uniformly

continuous function f such that || f h−1||∞ < ∞ holds

λ
−nLn

φ f → ν( f )h

uniformly on compacts.

Positive recurrence and convergence result in Theorem 6.1 hold for matrices
A satisfying the following Big Images and Preimages property .

BIP There is a finite set of states i1, i2, . . . iN such that for every state j in
the alphabet there are k, l such that aik ja jil = 1.

The following result of Sarig from [15] extends the results of [14] and works
of Aaronson, Denker , Mauldin, Urbanski and Yuri, see [2], [3], [19].
Consider the space of functions L with bounded norm | f |L which is the
sum of || f ||∞ and some fixed Hölder norm.

Theorem 6.2 Suppose (XA,σ) is topologically mixing, φ is locally Hölder
continuous, P(φ)< ∞ and BIP property holds. Then

(a) φ is positive recurrent, and there exist λ , h, ν as in theorem 6.1.
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(b) h is bounded away from zero and infinity and ν(X)< ∞.

(c) There exist K > 0, θ ∈ (0,1) such that for f ∈L holds

| λ−nLn
φ

f −hν( f ) |
L

< Kθ
n| f |L (66)

2. As a corollary from Theorem 6.2 we get

Proposition 6.3 Suppose there is a Markov partition of the attractor satis-
fying the following properties.

(a) The matrix A of admissible transitions is topologically mixing and sat-
isfies BIP property.

(b) Φ(x,y) =−log| DuF | is Hölder on the space of admissible sequences.

(c) For some φ(x) cohomologous to Φ(x,y) holds P(φ(x))< ∞.

then 66 holds.

Proposition 6.3 gives sufficient conditions for exponential decay of correla-
tions for Hölder (in particular smooth) functions restricted to the attractor.

7 Proof of the exponential decay of correlations
We check properties (a) - (c).

1. Recall that in our model we consider the partition of the square into full
height rectangles Ei.
Our shift is Bernoulli, all rows (and columns) are the same row of 1-s, so it
is topologically mixing and property (a) is satisfied.

2. Property (b) follows from 10.

3. Next we prove property (c). As in the case of attractors for Axiom A sys-
tems we prove

Proposition 7.1 For φ(x) = φ u(x) topological pressure P(φ u(x)) equals
zero.
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Proof.
We fix some symbol a, respective rectangle Ea, and W u

0a =W u
0 ∩Ea. When

evaluating Zn(φ ,a) in 63 we consider respective sum over all periodic orbits
of period n starting in Ea.
Each cylinder set Eai1...in−1 contains one periodic orbit of period n. When
evaluating φ u(x) we use formula 60. We can evaluate that expression at a
point z of intersection between the stable manifold of a periodic point in
Eai1...in−1 and W u

0a. Then each term in 63 is a product of two expressions.
The first expression equals 1

DuFn(z) , which coincides up to a uniformly bounded
factor with the length of W u(z,Eai1...in−1).
The second expression eu(z)−u(F(z) is uniformly bounded away from zero
and infinity.
Therefore up to a uniformly bounded factor the sum 63 equals to the length
of W u

0a. That implies P(φ) = 0. Q.E.D.

So all properties of Proposition 6.3 are satisfied, and we get exponential decay of
correlations for one-sided shift. As in [7] it implies exponential decay of corre-
lations for two-sided shift and therefore for Hölder functions on Q. That proves
Theorem 4.2.

Remark 7.2 Under conditions of Theorem 4.2 the central limit theorem holds for
Hölder functions on Q which are not cohomologous to constants .

Remark 7.3 Corollary 4 from [15] implies that under conditions of Theorem 4.2
there are no ”phase transitions” in the sense that the function t→ P(−t logDu f )
is real analytic in a neighborhood of t = 1.

Let us denote µS the invariant measure on Λ constructed in [9], [10] follow-
ing Sinai method, and let µRB be the invariant measure on Λ constructed above
following Ruelle-Bowen method, see [13], [7]. Let µ1 be the projection of µS
onto one-sided sequences, and let µ be the measure on one-sided sequences con-
structed above by Ruelle-Bowen method. In both constructions measures of cylin-
der sets [i0i1 . . . in−1] of any rank equal up to a uniform constant to the length of the
crossections of Ei0...in−1 by W u

0 . So µ1 and µ are equivalent and therefore they co-
incide. That is a particular case of the characterization of Gibbs measures proved
in [14].
As in the classical case that implies
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Corollary 7.4 Measures µS and µRB coincide.
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